
Parallel TDC
Mojatatu Networks



Current state

● TDC Consists of more than a thousand test cases
○ It’s still growing…
○ P4TC will add 200+ cases

● Integrated into kselftests
○ Used by many downstream public/private CI services for sanity checking

■ RedHat, Linaro, etc
○ Only runs a select part of the suite

● Somewhat self contained python code
○ Only dependency to external python modules is `scapy`

● Painfully serial way to solve a embarrassingly parallel workload
○ Takes a long time to finish on some debug configs
○ Why we are not using all these spare cores to do some useful work?



Current state -next

● Every test definition is a self contained unit if using net namespaces
○ No test should interfere with each other

● Split the test run into 3 phases
○ Setup all tests resources, run all tests, report results

● Run tests over a worker pool
○ Resizable with the `-J` argument
○ Implemented using Python’s own thread pool library

● Total runtime dropped close to 2.5x in full run
○ Even though the tests serialize over rtnl_lock()



Upcoming changes

● Still fixing/improving some rough edges on the CI services
○ In contact with the tuxsuite guys to make tdc as green as possible

● Let the bulls run
○ Make kselftests run the entire suite by default

● Improve handling of resources so rcu and workqueue stops trolling us
○ Easy way out is to just `sleep 2` everywhere but it’s a massive workaround
○ Maybe some fancy netlink notification callback scheme?

● Improve resource setup time
○ We rely heavily on iproute2 but debug configs make fork() pretty slow
○ As this is the same for every test perhaps calling netlink directly is better



Thank you!


